矩阵乘法

矩阵乘法的简单实现

我们实现一个简单的两个矩阵相乘,A*B , B*C -- > A*C

伪代码如下:

1
2
3
4
for(int i = 1;i <= A;i++)
for(int j = 1;j <= C;j++)
for(int k = 1;k <= B;k++)
C[i][j] += A[i][k] * B[k][j];

矩阵乘法结合快速幂

一般来说我们矩阵会有AE^n的形式,我们E一般是两个维度都相同,根据矩阵的结合律,我们可以先根据快速幂求出E^n,在左乘A的到结果。

例如题目斐波那契

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import java.io.*;
import java.util.*;

class Main{
public static Scanner sc = new Scanner(System.in);
public static int[][] a = {{0,0,0},{0,0,1},{0,1,1}};
public static int P = 10000;

public static int[][] mul(int[][] a,int[][] b){
int[][] c = new int[3][3];
for(int i = 1;i <= 2;i++){
for(int j = 1;j <= 2;j++){
for(int k = 1;k <= 2;k++){
c[i][j] += (int)(((long) a[i][k] * b[k][j])%P);
}
}
}
return c;
}

public static int[][] qmi(int[][] a,int k){
int[][] res = {{0,0,0},{0,1,0},{0,0,1}};
while(k > 0){
if((k & 1) == 1) res = mul(res,a);
k >>= 1;
a = mul(a,a);
}
return res;
}
public static void main(String[] args){
int u = sc.nextInt();
while(u != -1){
if(u==0){
System.out.println(0);
u = sc.nextInt();
continue;
}
int[][] res = mul(new int[][]{{0,0,0},{0,0,1},{0,0,0}},qmi(a,u));
System.out.println(res[1][1]);
u = sc.nextInt();
}
}
}